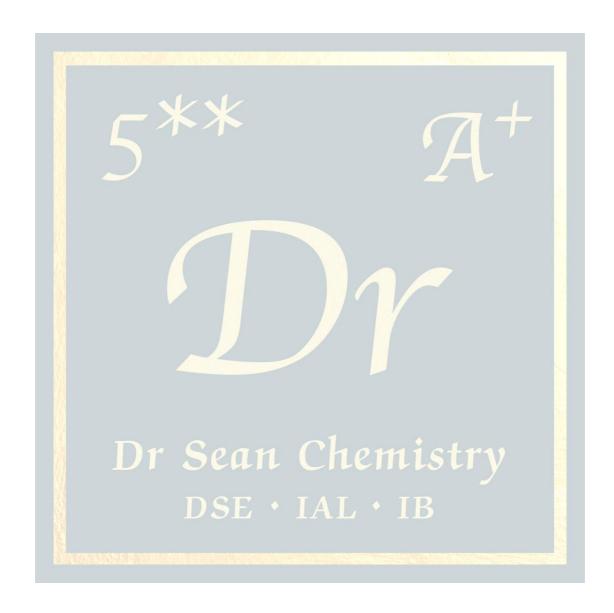
Dr Sean's Chemistry Class way to SUCCESS


The Periodic Table of the Elements

1																	2
H																	He
Hydrogen 1.00794		,															Helium 4.003
3	4											5	6	7	8	9	10
Li Lithium	Be Beryllium											Boron	Carbon	N	O	F Fluorine	Ne Neon
6.941	9.012182											10.811	12.0107	Nitrogen 14.00674	Oxygen 15.9994	18.9984032	20.1797
11	12	N.										13	14	15	16	17	18
Na Sodium	Mg Magnesium					Λ						Al	Si	P Phosphorus	S Sulfur	Cl	Ar Argon
22.989770	24.3050	40										26.981538	28.0855	30.973761	32.066	35.4527	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K Potassium	Ca	Sc Scandium	Ti Titanium	V Vanadium	Cr	Mn Manganese	Fe	Co	Ni Nickel	Cu	Zn	Gallium	Ge	As Arsenic	Se Selenium	Br Bromine	Kr Krypton
39.0983	40.078	44,955910	47.867	50.9415	51.9961	54.938049	55.845	58.933200	58.6934	63.546	65.39	69.723	72.61	74.92160	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb Rubidium	Sr	Y	Zr	Nb Niobium	Mo Molybdenum	Tc Technetium	Ruthenium	Rh	Pd Palladium	Ag Silver	Cd	In	Sn	Sb	Te Tellurium	I Iodine	Xe Xenon
85.4678	87.62	88.90585	91.224	92.90638	95.94	(98)	101.07	102.90550	106.42	107.8682	112.411	114.818	118.710	121.760	127.60	126.90447	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Barium	La	Hafnium	Ta Tantalum	Tungsten	Re	Osmium	Ir	Pt	Au	Hg Mercury	Tl	Pb Lead	Bi Bismuth	Po	At Astatine	Rn Radon
132.90545	137,327	138,9055	178.49	180.9479	183.84	186.207	190.23	192.217	195.078	196.96655	200.59	204.3833	207.2	208.98038	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114				
Fr Francium	Ra Radium	Ac Actinium	Rf Rutherfordium	Db Dubnium	Sg Scaborgium	Bh Bohrium	Hassium	Mt Meitnerium									
(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
				90	91	144.24 92	93	150.36 94	151.964 95	157,25 96	158.92534 97	162.50 98	164.93032 99	167.26	168.93421	173.04	174.967
				Th	Pa	Ű	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
				Thorium	Protactinium 231,03588	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium (247)	Californium	Einsteinium (252)	Fermium (257)	Mendelevium (258)	Nobelium	Lawrencium
				232.0381	231.03588	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)
						00	111			0 11	11	0+1	140				
						CL						9 L					
		17															
DSE Challenge by IAL IB																	
DOF Alignina na																	
Nr	C.	ear	ır	ho	mi	CH	M										
ui		51															

Topic 8 Chemical Reactions and Energy

You have 25 mins to complete 10 Questions.

1. Which of the following is the correct equation for the standard enthalpy change of formation of water?

Level 3

A.
$$H_2(g) + 1/2O_2(g) \rightarrow H_2O(g)$$

B. $H_2(g) + 1/2O_2(g) \rightarrow H_2O(l)$
C. $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$
D. $H^+(aq) + OH^-(aq) \rightarrow H_2O(l)$

2. Which of the following is the correct equation for the standard enthalpy change of neutralization between sulphuric acid and sodium hydroxide solution?

Level 4

A.
$$H_2SO_4(aq) + 2NaOH(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(1)$$

B. $1/2H_2SO_4(aq) + NaOH(aq) \rightarrow 1/2Na_2SO_4(aq) + H_2O(1)$
C. $2H^+(aq) + 2OH^-(aq) \rightarrow 2H_2O(1)$
D. None of the above

3. 0.46 g of ethanol was completely burnt to heat 500 cm³ of water. The temperature of water was increased by 6.4 °C. Calculate the enthalpy change for the combustion of ethanol. (Specific heat capacity of water: 4.18 J g⁻¹ °C⁻¹, relative molecular mass of ethanol: 46)
Level 4

C. +1230 kJ mol⁻¹

D. -1230 kJ mol⁻¹

4. 0.86 g of hexane was completely burnt in a well-insulated bomb calorimeter. The temperature of the calorimeter was increased by 20 °C. Given the standard enthalpy change for the combustion of hexane is -4160 kJ mol⁻¹, calculate the energy needed for increasing the temperature of the calorimeter by 1 °C. (relative molecular mass of hexane: 86)

Level 5

A. 500 J

B. 2080 J

C. 2420 J

D. Cannot be determined.

5. 0.327 g of zinc was reacted with 50 cm³ of 0.16 mol dm⁻³ silver nitrate solution. The temperature of the resulting solution increased by 4.1 °C. Calculate the enthalpy change for the reaction between zinc and silver nitrate solution. (Specific heat capacity of the reaction mixture: 4.18 J g⁻¹ °C⁻¹, relative atomic mass of zinc: 65.4)

 $Zn(s) + 2Ag^{+}(aq) \rightarrow Zn^{2+}(aq) + 2Ag(s)$

Level 5*-5**

A. +107 kJ mol-1

B. -107 kJ mol⁻¹) SE • IAL • IB

C. -171 kJ mol⁻¹

D. -214 kJ mol⁻¹

6. 25 cm³ of 0.50 mol dm⁻³ of sulphuric acid was reacted with 25 cm³ of 1.50 mol dm⁻³ of sodium hydroxide solution. The temperature of the resulting solution was increased by 6.8 °C, calculate the enthalpy change for the neutralization between sulphuric acid and sodium hydroxide solution. (Specific heat

capacity of the reaction mixture: 4.18)

Level 5

A. +28 kJ mol⁻¹

B. -28 kJ mol⁻¹

C. -57 kJ mol⁻¹

D. -114 kJ mol⁻¹

- 7. A student conducted an experiment to determine the enthalpy change for the combustion of ethanol. However, the magnitude of the experimental value he found was lower than the theoretical value. Which of the following are the possible reason?
 - 1) Heat is lost to the surrounding during the experiment.
 - 2) The combustion of ethanol is incomplete.
 - 3) The ethanol sample contains some methanol impurities.

Level 4) r Sean Chemi

A. 1 and 2 DSE · IAL · IB

B. 1 and 3

C. 2 and 3

D. 1, 2 and 3

8. Which of the following experiment will its reaction mixture give the highest temperature raise?

Level 5**

Experiment	HCl(aq)	NaOH(aq)				
1	25 cm ³ of 1.0 mol dm ⁻³	25 cm ³ of 1.0 mol dm ⁻³				
2	25 cm ³ of 2.0 mol dm ⁻³	25 cm ³ of 2.0 mol dm ⁻³				
3	50 cm ³ of 2.0 mol dm ⁻³	50 cm ³ of 2.0 mol dm ⁻³				
4	25 cm ³ of 3.0 mol dm ⁻³	25 cm ³ of 3.0 mol dm ⁻³				

A. 1

B. 2

C. 3

D. 4

9. Consider the following two statements:

1st statement	2nd statement				
The temperature rise of reaction	The number of moles of water				
mixture by reacting 50.0 cm ³ of	formed from reacting 50.0 cm ³ of				
1.0 mol dm ⁻³ HCl(aq) with 50.0	1.0 mol dm ⁻³ HCl(aq) with 50.0				
cm ³ of 1.0 mol dm ⁻³ NaOH is	cm ³ of 1.0 mol dm ⁻³ NaOH is				
higher than reacting 25.0 cm ³ of	more than reacting 25.0 cm ³ of				
1.0 mol dm ⁻³ HCl(aq) with 25.0	1.0 mol dm ⁻³ HCl(aq) with 25.0				
cm ³ of 1.0 mol dm ⁻³ NaOH.	cm ³ of 1.0 mol dm ⁻³ NaOH.				

Level 5

DSE · IAL · IB

- A. Both statements are true and the 2nd statement is a correct explanation of the 1st statement.
- B. Both statements are true but the 2nd statement is NOT a correct explanation of the 1st statement.
- C. The 1st statement is false but the 2nd statement is true.
- D. Both statements are false.

10. Given the standard enthalpy change for the following reactions, calculate the standard enthalpy change for formation of magnesium oxide.

Mg(s) + 2HCl(aq) → MgCl₂(aq) + H₂(g)
$$\Delta H_r^{\circ} = -467 \text{ kJ mol}^{-1}$$

MgO(s) + 2HCl(aq) → MgCl₂(aq) + H₂O(l) $\Delta H_r^{\circ} = -151 \text{ kJ mol}^{-1}$
H₂(g) + 1/2O₂(g) → H₂O(l) $\Delta H_r^{\circ} = -286 \text{ kJ mol}^{-1}$

Level 5

A. +316 kJ mol⁻¹

B. -316 kJ mol⁻¹

C. +602 kJ mol⁻¹

D. -602 kJ mol⁻¹

- ☑用Google Form 交答案
- ✓ 你會即時知道分數
- ✓ 你亦會收到 Predicted Grade連詳細解題步驟 + 教學影片
- ✓ 你亦會被加入 **Dr Sean Chemistry WhatsApp Group**,收取free class資訊和溫書貼士!
- ←【按此進入 Google Form 提交答案】 LSTTV

DSE•IAL•IB

