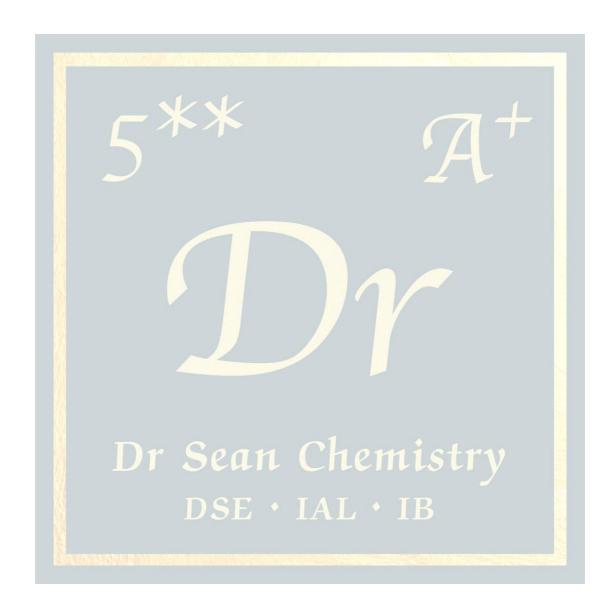
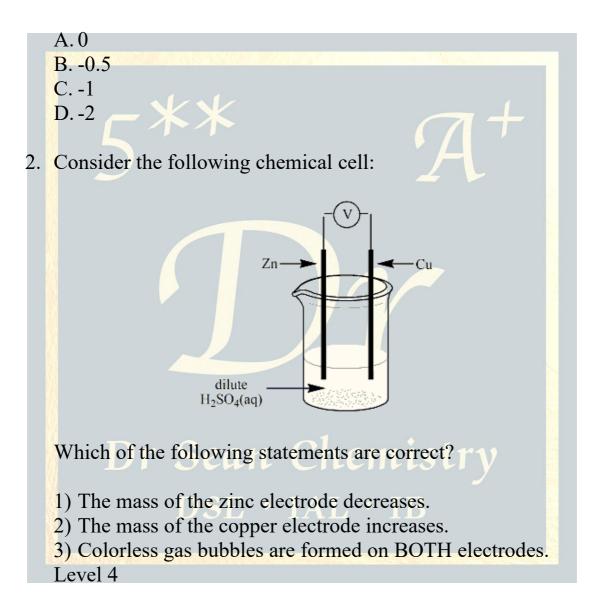
Dr Sean's Chemistry Class way to SUCCESS


The Periodic Table of the Elements

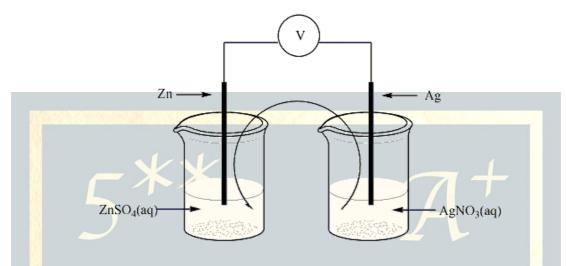
					-		11041	c rau	10 01	the L							
1																	2
Н																.	He
Hydrogen 1.00794																	Helium 4.003
3	4											5	6	7	8	9	10
Li	Be											В	C	N	O	F	Ne
Lithium 6.941	9.012182											Boron 10.811	Carbon 12.0107	Nitrogen 14.00674	Oxygen 15.9994	Fluorine 18.9984032	Neon 20.1797
11	12	M										13	14	15	16	17	18
Na	Mg				*	\mathcal{K}						Al	Si	P	S	Cl	Ar
Sodium 22.989770	Magnesium 24.3050											Aluminum 26.981538	Silicon 28.0855	Phosphorus 30.973761	Sulfur 32.066	35.4527	Argon 39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K Potassium	Ca	Sc Scandium	Ti Titanium	Vanadium	Cr	Mn Manganese	Fe	Co	Ni Nickel	Cu	Zn	Gallium	Ge	As Arsenic	Se Selenium	Br Bromine	Kr
39.0983	40.078	44,955910	47.867	50.9415	51.9961	54.938049	55.845	58.933200	58.6934	63.546	65.39	69.723	72.61	74.92160	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb Rubidium	Sr	Y	Zr	Nb Niobium	Mo Molybdenum	Tc Technetium	Ruthenium	Rh	Pd Palladium	Ag Silver	Cd	In	Sn	Sb	Te Tellurium	I Iodine	Xe
85.4678	87.62	88.90585	91.224	92.90638	95.94	(98)	101.07	102.90550	106.42	107.8682	112.411	114.818	118.710	121.760	127,60	126.90447	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Barium	Lanthanum	Hf Hafnium	Ta Tantalum	Tungsten	Rhenium	Osmium	lr Iridium	Pt	Au	Hg Mercury	Tl	Pb Lead	Bi Bismuth	Polonium	At Astatine	Rn Radon
132.90545	137,327	138,9055	178.49	180.9479	183.84	186.207	190.23	192.217	195.078	196.96655	200.59	204.3833	207.2	208.98038	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114				
Fr Francium	Ra Radium	Ac Actinium	Rf Rutherfordium	Db Dubnium	Sg Seaborgium	Bh Bohrium	Hs Hassium	Mt Meitnerium									
(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				Cerium	Prascodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
				90	91	144.24 92	93	150.36 94	151.964 95	157.25	158.92534 97	162.50 98	164.93032 99	167.26	168.93421	173.04	174.967
				Th	Pa	Ü	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
				Thorium 232.0381	Protactinium 231.03588	Uranium 238.0289	Neptunium (237)	Plutonium (244)	Americium (243)	Curium (247)	Berkelium (247)	Californium (251)	Einsteinium (252)	Fermium (257)	Mendelevium (258)	Nobelium (259)	Lawrencium (262)
				232.0361	[231.03366]	230.0209	(231)	(244)	(243)	(247)	(247)	(231)	(232)	(231)	(238)	(239)	(202)
						00	111		· In	011	- i	0+1	111				
												フレ					
	_																
MS	5 F I			ρn	U D	hu											
U)		411	UII.	yu	IJy											
Nr	T C	eai	1	he	mi	CH	M										

Topic 7 Redox Reactions, Chemical Cells and Electrolysis



You have 25 mins to complete 10 Questions.

1. What is the oxidation number of O in H_2O_2 ? Level 3


- A. 1 and 2
- B. 1 and 3
- C. 2 and 3
- D. 1, 2 and 3

3. Consider the following chemical cell:

Which of the following statements are INCORRECT?

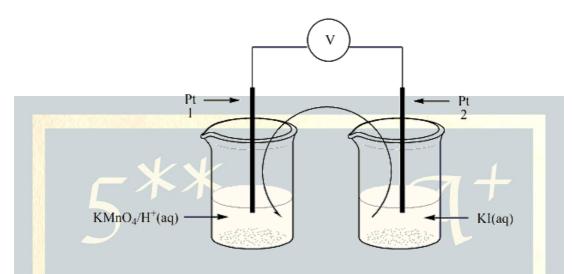
- 1) Sodium chloride can be used to prepare a salt bridge for this cell.
- 2) The mass increased in one of the electrodes is the same as the mass decreased in another electrode.
- 3) The number of metal particles involved in the reactions on the two electrodes are different.

Level 5

A. 1 and 2r Sean Chemistry

B. 1 and 3

C. 2 and 3


D. 1, 2 and 3

4. Consider the following chemical cell:

Which of the following statements are correct?

- 1) The purple color of the electrolyte in half-cell A becomes paler.
- 2) The electrolyte in half-cell B turns brown.
- 3) The voltmeter reading will be negative if platinum electrode 1 is connected to the negative terminal of the voltmeter.

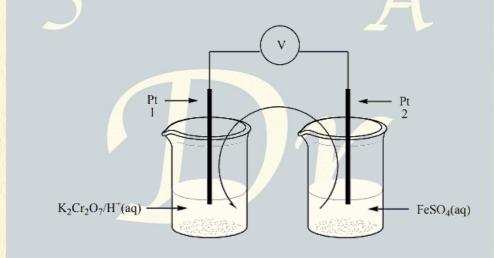
Level 5

A. 1 and 2r Sean Chemistry

B. 1 and 3 $\square \subseteq \mathbb{F} \rightarrow \top \triangle \top \rightarrow \top \top$

C. 2 and 3

D. 1, 2 and 3



- 5. What is the maximum number of mol of iodide ions that can be completely consumed by 1 mol of dichromate ion?

 Level 3
 - A. 1/3 mol
 - B. 1/6 mol
 - C. 3 mol
 - D. 6 mol
- 6. Consider the following chemical cell:

Given that both electrolytes have the same initial concentration and volume (2.0 mol dm⁻³ and 1 dm³ respectively), what will be the concentration of the iron(II) sulphate solution when the concentration of the acidified potassium dichromate solution is decreased to 1.8 mol dm⁻³. Level 5

- A. 1.8 mol dm⁻³
- B. 1.4 mol dm⁻³
- C. 0.8 mol dm⁻³
- D. Cannot be determined.

- 7. Which of the following statements concerning the electrolysis of concentrated sodium chloride solution are correct?
 - 1) H⁺ ion is preferentially discharged at the negative electrode to give H₂ as it has stronger oxidizing power than Na⁺.
 - 2) Cl⁻ ion is preferentially discharged at the positive electrode to give Cl₂ as the concentration of Cl⁻ is much higher than the concentration of OH⁻.
 - 3) The concentration of the sodium chloride solution decreases when the cell is operating.

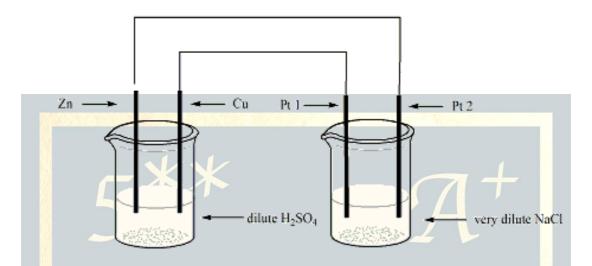
Level 3

A. 1 and 2

B. 1 and 3

C. 2 and 3

D. 1, 2 and 3


Dr Sean Chemistry
DSE · IAL · IB

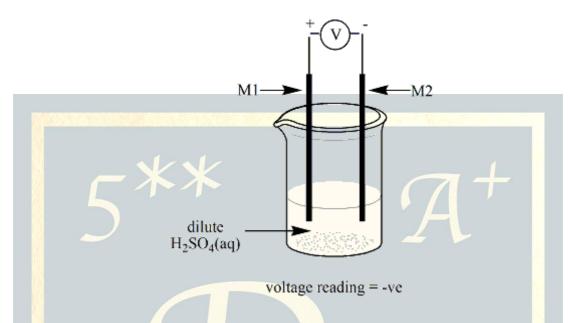
8. Consider the following setup:

Which of the following statements are correct?

- 1) The sign of the electrodes from left to right is + +.
- 2) There is colorless gas bubbles formed at the copper electrode and the platinum electrode 2.
- 3) The concentration of the sodium chloride solution increases when the cell is operating.

Level 5

- A. 1 and 2r Sean Chemistry
 B. 1 and 3
- B. 1 and 3
- C. 2 and 3


D. 1, 2 and 3

9. Consider the following setup:

The voltmeter reading is negative when M1 is connected to the positive terminal of the voltmeter while M2 is connected to the negative terminal of the voltmeter.

Which of the following statements are correct?

- 1) M1 has stronger reducing power than M2.
- 2) Electrons flow from M1 to M2.
- 3) Ions formed by M1 is a weaking oxidizing agent than the ions formed by M2.

Level 4

- A. 1 and 2
- B. 1 and 3
- C. 2 and 3
- D. 1, 2 and 3

10.A solution containing 1.0 mol of acidified potassium permanganate was reacted with 1.0 mol of hydroxylamine (HONH₂).

After the reaction, 0.8 mol of permanganate remained unreacted, and 0.5 mol of hydroxylamine was left.

Given that MnO₄⁻ is reduced to Mn²⁺, determine the nitrogen-containing product formed in this redox reaction. Level 5**

- $A. N_2O$
- B. NO
- C. NO₂
- D. Cannot be determined.
- △ 想知道你嘅程度去到邊?
- ✓用Google Form 交答案
- ✓你會即時知道分數
- ✓ 你亦會收到 Predicted Grade連詳細解題步驟 + 教學影片
- ✓ 你亦會被加入 **Dr Sean Chemistry WhatsApp Group**,收取free class資訊和溫書貼士!
 - ►【按此進入 Google Form 提交答案】

DSE · IAL · IB

